
Tab2Pdf Design Document

EECS 2311
V. Tzerpos
Wednesday, April 7, 2015

Group 1
Atto, Brody
Cirillo, Marco
Patel, Deep
Ragavendran, Varsha
Sitiugin, Glib
Sitkovets, Anton

Overview

The program operates by being g iven a plain text guitar tab f ile as input f rom the user and
converting it to a pretty-printed PDF. A Graphical User Interf ace is used to select the tab, as
well as where to save the PDF. When the conversion process is complete, the f inal PDF is
opened f or the user to view.

High-Level Design

As per project requirements, we use the iTextPDF library to convert a user’s tab f iles to a
f ormatted PDF version of the sheet music. The user of this application interacts only with
our graphical user interf ace, which abstracts away the inner workings of the system. The
result is a user-f riendly application that is quick and easy to use.

The sof tware is designed similarly to the way a programming language compiler converts
code f rom human readable instructions (int x = 3 + 2;) into machine-readable
instructions (add eax, ebx). There are two phases involved when converting f rom tab to
PDF. The f irst phase consists of transf orming the symbols of the tab into Java Objects that
we can work with. The second phase takes these Objects and draws them into the PDF
document.

Technical Note: the f irst phase is not unlike converting code into an Abstract Syntax
Tree (AST), a technique used in compilers. Failure to create an AST in compilers can
be due to a syntax error (such as the code int 3; producing error: not a
statement in Java).

Objects that represent tab notation implement a common Interf ace, ITabNotation ,
which we use to guarantee us the Object can perf orm certain tasks. We use IParser
Objects to create these ITabNotation objects out of the guitar tab. A PDFCreator uses
these ITabNotation Object to create the f inal PDF.

Technical Note: ITabNotation Objects are ref lexive and symmetric. calling
toString() on ITabNotation must yield the exact string that the IParser

created it with.

This architecture lends itself to apply certain design patterns. Example of some of the
design patterns used include:

Iterator Pattern, to traverse collections of ITabNotation Objects
Factory Pattern: our IParser Objects are f actories that create ITabNotation
Objects
Visitor Pattern: our PDFCreator visits each ITabNotation Object to construct the
PDF.
Decorator Pattern: Some models decorate other models. An example of this is the
HammerOn and PullOff classes, which decorate a Note with a hammer-on or pull-

of f .

High-Level Class Diagram

The class diagram shows how objects in the system interact with each other. The program
begins f rom the Main.java f ile, f rom which it constructs the UI. The UI handles user
interaction, including handling input (parsing the tab and creating objects f or each symbol),
and output (exporting the tab to a PDF document).

Sequence Diagram

Program Start

This sequence diagram describes what happens when the program starts up.

Opening a File

This sequence diagram describes what happens when the user opens a (tab) f ile in the
program.

Exporting a PDF

This sequence diagram describes what happens when the user exports a tab f ile to a PDF
f ile.

Parsing a Tab

This sequence diagram describes what happens when the program parses a tab into object
notation.

Maintenance Scenarios

The code is designed to be very maintainable, by being organized in to logical packages (see
Package Overview below) that implement certain f eatures. We tried to ensure high cohesion
and low coupling when designing our packages and classes. A f ew typical maintenance
scenarios will be described below.

Adding a New Symbol

If a new tab symbol needs to be added, all a developer has to do is implement a new
ITabNotation class to model the symbol, and a new IParser class to parse the symbol

out of a tab. All that is needed to do to wire up the new parser is to add it to the
List<IParser> in the TabParser . This list represents all parsers that the TabParser

may use when parsing a tab f ile.

Technical Note: the new IParser will return the new ITabNotation model that
represents the new symbol.

This f unctionality can be expanded in the f uture by exposing an API that allows the
TabParser to add new parsers programmatically (ie: if someone wanted to use Tab2Pdf

as a library in another project)

Adding a New Tab to the GUI

To add a new tab to the GUI (beside the Editor and Preview tabs), a developer would
have to f irst construct their new GUI tab as a JPanel object. Then, they can add their new
JPanel as a tab by f etching the exposed JTabbedPane in
MainJFrame.getTabbedPane() and calling JTabbedPane.addTab() on the object.

Adding More Output Options

If a developer wishes to output something other than a PDF f rom Tab2PDF, they can do so
by creating a Java class that can take the Tab object as an input. One of the benef its to
our design is that we parse the text into the tab f ile into an object representation (similar to
an Abstract Syntax Tree in compiler design). This allows us to transf orm the output into any
f ormat, since we only need to concern ourselves with converting f rom an object f ormat, to
the desired output f ormat (as opposed to having a separate parser f or each f ormat we
wish to output to). It is recommended that running this new Java class is done on a
separate thread so as to not f reeze up the GUI, so the output code should be wrapped in a
Runnable object.

Package Overview

ca.yorku.cse2311.tab2pdf

The main package of this application. It consists of Main . This class is the entry point of
the application. It is responsible f or creating and showing the GUI.

ca.yorku.cse2311.tab2pdf.model

This package holds the business models of this application. All models implement
ITabNotation , which describes a set of methods we expect all tab models to have, such

as the ability to draw() to the PDF, the size() of the drawn symbol, and toString() ,
which must return the exact String that was used to create the object. This means models
are ref lexive and symmetric. “3” should parse into a Note with value 3, and calling
toString() on this Note should yield “3”.

Technical Note: This is accomplished programmatically, rather than by storing the
String that was used to create the object.

Special notes, such as HammerOn s and PullOff s (which use the decorator pattern around
a Note object) implement ILongDraw so they are able to draw across musical bar
boundaries.

ca.yorku.cse2311.tab2pdf.parser

This package holds parsers capable of creating our models. All parsers implement
IParser , which requires parsers to have a getPattern() method which returns the
Pattern (Java’s Regular Expression class) the parser will use internally to create the model

object, a canParse() method, signif ying the parser can indeed construct a model out of a
specif ied String token, and parse() , which actually parses the token into the model.

TabParser holds all IParser objects, and is concerned with parsing the entirety of the
tab using these objects. If a new symbol is needed, one must write a model, implementing
ITabNotation ; a parser, implementing IParser ; and f inally they must add the parser to
TabParser , making it aware of the new symbol.

ca.yorku.cse2311.tab2pdf.pdf

This package holds PDF-related utilities. PdfHelper is a wrapper around the iText PDF
library, which allows drawing to a PDF document. PdfCreator is a Runnable that allows
us to create the PDF on a separate thread (so as to not f reeze up the GUI if the PDF takes a
while to create).

ca.yorku.cse2311.tab2pdf.ui

This package holds the GUI of the program, in one f ile MainJFrame . The MainJFrame is
made up of individual components, such as the Toolbar , the Menubar , or the
EditorTab . Each component has a ref erence back to its parent (MainJFrame) to allow

the component to use its parents exposed methods. Additionally, the MainJFrame has
that represent user actions, such as clicking the Save Tab button, which calls the
SaveFileListener , which ultimately saves the tab f ile the user is working on. Listeners,

like components, also take a ref erence back to its parent, to use its exposed methods.

Components

This diagram shows the two-way relationship between components and the MainJFrame .
The MainJFrame creates each component, which in turn has a ref erence the the

MainJFrame that created it.

Listeners

This diagram shows the two-way relationship between listeners and the MainJFrame . The
MainJFrame creates each listener, which in turn has a ref erence the the MainJFrame

that created it.

ca.yorku.cse2311.tab2pdf.util

This package holds small utilities that contain helper methods to aid in development.
FileUtils contains utilities to help with File s, such as reading a File and returning a
List<String> consisting of each line in the File .

	Tab2Pdf Design Document
	Overview
	High-Level Design
	High-Level Class Diagram
	Sequence Diagram
	Program Start
	Opening a File
	Exporting a PDF
	Parsing a Tab

	Maintenance Scenarios
	Adding a New Symbol
	Adding a New Tab to the GUI
	Adding More Output Options

	Package Overview
	ca.yorku.cse2311.tab2pdf
	ca.yorku.cse2311.tab2pdf.model
	ca.yorku.cse2311.tab2pdf.parser
	ca.yorku.cse2311.tab2pdf.pdf
	ca.yorku.cse2311.tab2pdf.ui
	Components
	Listeners

	ca.yorku.cse2311.tab2pdf.util

