Tab2Pdf Testing Documentation

EECS 2311
V. Tzerpos
Wednesday, April 7, 2015

Group 1

Atto, Brody

Cirillo, Marco

Patel, Deep
Ragavendran, Varsha
Sitiugin, Glib
Sitkovets, Anton

Testing Methodology

Since Tab2Pdf is built using the agile software development method, we opt to incorporate
Test Driven Development into our sprints. When a group member commits code to the
repository (via a pull request), the corresponding test cases are also included. This can be
seenas a “bottom up” approach to testing, as the foundations of the software are tested
as they are built.

Locally, when a member is working on a new feature, stub methods for the feature are
made first, followed by test cases. These test cases are meant to fail, since no code was
written yet. As the developer builds out the code in the former stub methods, tests begin
to pass, and the software is assured to work correctly.

In our tests, we supply a minimum of 5valid inputs and 5 invalid inputs to each test case.
Examples of valid input were taken straight from the sample files on the course website.
Invalid input was created by malforming the valid input, such as adding characters that were
not valid (%), making spelling mistakes (ATHOR= instead of AUTHOR=).

This document will detail the specific methods in our JUnit test files, theirimportance to
the overall operation of the code, and the metrics of our testing.

Testing Sufficiency

We believe fully testing the models and parsers are sufficient because they represent the
business logic of this program. These classes are responsible for the bulk of what Tab2PDF
does, and as such, should be thoroughly tested.

The GUI could have been tested with Java’s Robot class, but we opted for manualtesting,
since the GUIlis rather simplistic (and Sun thoroughly tests Swing code, so we know we have
a solid foundation).

Util classes are also untested, as they are simple functions.

The PDF classes PdfHelper and PdfCreator are untested because there is difficulty in
comparing PDF documents. This is because two documents can be rendered differently in
different PDF viewers, so it is tough to gauge which viewer is the truly correct (ie: the
oracle).

Test Classes

IParser Test Classes

There are two methods we test in all parsers (classes that implement IParser). The first
of whichis canParse(String token) which returns true if the parser can parse the given
tokeninto an ITabNotation object. The ITabNotation object represents a single piece
of the tab, such as a note, slide, dash or hammer-on. The second method we test is the
parse(String token) method, which actually parses the token and returns an
ITabNotation object, throwing a ParseException if the token cannot be parsed. If
canParse() returns true,itis expectedthat parse() willnot throw a
ParseException.

DashParserTest.java

This class tests the programs ability to parse a dash (-) in tab notation. Adash signifies a
space between notes. The more dashes there are in a row, the longer the space should be.
Forvalid lines, we ensure the line begins with at least one dash. For invalid lines, we put
characters that are not dashes at the beginning of the line,suchas |, 1, ||, _,and %.

DoubleBarParserTest.java

This class tests the programs ability to parse a repeat bar, which has a few forms:

Standard Repeat Bar

This should render as a regular repeat bar

cee x|
1= e -1
1= e -1

Repeat Bar with a Specified Number of Repeats

This should render as a repeat bar with “Repeat 3 Times” at the top of it

I]- ... -|3
[[= oo =]

Arepeat bar signifies a bar should repeat (an optionalamount of times). For valid lines, we
ensure the line begins with at least one type of repeat bar. Forinvalid lines, we put
characters that are not valid repeat bars at the beginning of the line, suchas -, 1, xx| |,
-] ,and | .

NoteParserTest.java

This class tests the programs ability to parse a note (3)intab notation. Anote signifies a

musical note. Valid notes should be between 0 and 24 inclusive, as most guitars have a

maximum of 24 frets. Forvalid lines, we ensure the line begins with at least one number.

Forinvalid lines, we put characters that are not numbers at the beginning of the line, such as
|, -, 1], _,and %.

SlideParserTest.java

This class tests the programs ability to parse a slide (3s5) in tab notation. Aslide signifies a
slide between musicalnotes. The slide must have at least one start note orend note. A
slide is considered indeterminate if it does not have both a start and end note (s4), and it is

up to the musician to determine where to begin the slide from. Valid slides should have valid
notes between 0 and 24 inclusive, as most guitars have a maximum of 24 frets. For valid
lines, we ensure the line begins with at least one number ora slide (s). Forinvalid lines, we
put characters that are not numbers at the beginning of the line,suchas |, -, ||, 12,
and % .

SpacingParserTest.java

This class tests the programs ability to parse a spacing attribute (SPACING=1)in tab
notation. A spacing signifies the horizontal spacing the PDF output should follow. A higher
spacing value creates more space between notes. For valid lines, we ensure the line begins
with at least (case-insensitive) SPACING=N, where Nis any integer or decimalnumber. For
invalid lines, we put characters that are not numbers or misspell/shorthand SPACING , such
as SPACING=, SPACING=A, |--, 6--| ,and S=1.

SquareNoteParserTest.java

This class tests the programs ability to parse a square note (<2>)intab notation. Asquare
note signifies a harmonic should be played. For valid lines, we ensure the line begins with at
least <N>,where Nis any integer. Forinvalid lines, we put characters that are not numbers
in angle brackets, suchas |, -, 1, 23,and % .

SubtitleParserTest.java

This class tests the programs ability to parse a title attribute (SUBTITLE=Moonlight
Sonata) in tab notation. Atitle signifies the subtitle of the tab (typically the author). For
valid lines, we ensure the line begins with at least (case-insensitive) SUBTITLE=S, where S
is any string. For invalid lines, we put empty strings as the title or misspell/shorthand
TITLE ,suchas TITLE=, T=A, SUBTITLE=, Jim Matheos,and S=A.

TabParserTest.java

This class tests the programs ability to parse an entire tab file (Moonlight Sonata) into tab
notation. The tab file includes title, subtitle, and spacing attributes as well as the entire tab.

TitleParserTest.java

This class tests the programs ability to parse a title attribute (TITLE=Jim Matheos)in
tab notation. Atitle signifies the title of the tab. Forvalid lines, we ensure the line begins
with at least (case-insensitive) TITLE=S , where Sis any string. For invalid lines, we put

empty strings as the title or misspell/shorthand TITLE ,suchas TITLE=, T=A,
SUBTITLE=, Remembering Rain,and S=A.

ITabNotation Test Classes

These test classes test allof our model objects (those that implement ITabNotation).
These represent each symbolthat we support in tab notation.

BarLineTest.java

This class fully tests the BarLine class (representing a line ina Bar), including mutator
methods (getters and setters)andequals.

BarTest.java

This class fully tests the Bar class (representing a musical Bar), including mutator
methods (getters and setters)andequals.

DoubleBarTest.java

This class fully tests the DoubleBar class (representing a repeating Bar), including
mutator methods (getters and setters)andequals.

HammerOnTest.java

This class fully tests the HammerOn class (representing a musicalhammer on such as
3h5), including mutator methods (getters and setters)andequals.

PullOffTest.java

This class fully tests the HammerOn class (representing a musical pull off suchas 5p3),
including mutator methods (getters and setters)andequals.

ScalingTest.java

This class fully tests the Scaling class (representing tab verticalscaling, such as
SCALING=5.0), including mutator methods (getters and setters)andequals.

SpacingTest.java

This class fully tests the Spacing class (representing tab horizontal spacing, such as
SPACING=5.0), including mutator methods (getters and setters)andequals.

SquareNoteTest.java

This class fully tests the SquareNote class (representing a harmonic Note), including
mutator methods (getters and setters)andequals.

SubtitleTest.java

This class fully tests the Subtitle class (representing the tab’s subtitle such as
SUBTITLE=Ludwig van Beethoven), including mutator methods (getters and
setters)andequals.

TabTest.java

This class fully tests the Tab class (representing the ASClimusicaltab as a whole), including
mutator methods (getters and setters)andequals.

TitleTest.java

This class fully tests the Title class (representing the tab’s title such as
TITLE=Moonlight Sonata),including mutator methods (getters and setters)and
equals.

Coverage and Metrics

Code coverage is grouped by package. Our focus is on 100% method coverage in model
and parser classes. We chose not to perform automated testing of the GUI, instead opting
formanualtesting.

ca.yorku.cse2311.tab2pdf.model

This table showcases the testing coverage for our modelclasses.

Class Class % Method % Line %
Bar 100% (1/1) 100% (18/18) 92.9% (39/42)
BarLine 100% (1/1) 100% (7/7) 100% (15/ 15)
Dash 100% (1/1) 100% (8/8) 100% (13/13)
DoubleBar 100% (1/1) 100% (13/13) 84.6% (44/52)
HammerOn 100% (1/1) 100% (13/13) 92.9% (26/28)
Note 100% (1/1) 100% (10/10) 90.5% (19/21)
Pipe 100% (1/1) 100% (7/7) 100% (8/8)
PullOff 100% (1/1) 100% (13/13) 92.9% (26/28)
Scaling 100% (1/1) 100% (10/10) 100% (18/18)
Slide 100% (1/1) 100% (12/12) 93.9% (31/33)
Spacing 100% (1/1) 100% (10/10) 100% (18/ 18)
SquareNote 100% (1/1) 100% (9/9) 89.5% (17/ 19)
Subtitle 100% (1/1) 100% (10/10) 100% (17/17)
Tab 100% (1/1) 100% (17/17) 100% (33/33)
Title 100% (1/1) 100% (10/10) 100% (17/17)
ca.yorku.cse2311.tab2pdf.parser

This table showcases the testing coverage for our parser classes.

Class Class % Method % Line %
AbstractParser 100% (1/1) 100% (2/2) 100% (2/2)
DashParser 100% (1/1) 100% (4/4) 100% (7/7)

Class
DoubleBarParser
HammerOnParser
NoteParser
PipeParser
PulloffParser
SlideParser
SpacingParser
SquareNoteParser
SubtitleParser
TabParser

TitleParser

Tab2Pdf

Class %

100% (1/1)
100% (1/ 1)
100% (1/1)
100% (1/1)
100% (1/ 1)
100% (1/1)
100% (1/ 1)
100% (1/1)
100% (1/1)
100% (1/ 1)

100% (1/1)

Method %
100% (4/4)
100% (4/4)
100% (4/4)
100% (4/ 4)
100% (4/ 4)
100% (4/ 4)
100% (4/4)
100% (4/4)

100% (4/4)

100% (11/ 11)

100% (4/4)

Line %

92.9% (26/28)
87.5% (7/8)
100% (7/7)
100% (7/7)
87.5% (7/8)
100% (9/9)
85.7% (6/ 7)
100% (7/7)
85.7% (6/7)
76.8% (96/ 125)

85.7% (6/7)

This table showcases the testing coverage for our entire program, grouped by package.

Class
ca.yorku.cse2311.tab2pdf

ca.yorku.cse2311.tab2pdf.model

ca.yorku.cse2311.tab2pdf.parser

ca.yorku.cse2311.tab2pdf.parser.exception

ca.yorku.cse2311.tab2pdf.pdf

Class %
0% (0/ 3)

100% (15/
15)

100% (13/
13)

33.3% (1/
3)

50% (1/2)

Method %
0% (0/ 16)

100% (167/
167)

100% (57/57)

33.3% (1/3)

47.2% (17/
36)

Line %
0% (0/57)

94.2% (341/
362)

84.3% (193/
229)

33.3% (2/6)

45.3% (131/
289)

Class

ca.yorku.cse2311.tab2pdf.ui
ca.yorku.cse2311.tab2pdf.ui.component
ca.yorku.cse2311.tab2pdf.ui.listener

ca.yorku.cse2311.tab2pdf.util

Class %
0% (0/2)
0% (0/ 6)
0% (0/ 12)

0% (0/4)

Method %
0% (0/26)
0% (0/ 55)
0% (0/32)

0% (0/ 14)

Line %

0% (0/ 86)
0% (0/244)
0% (0/129)

0% (0/45)

	Tab2Pdf Testing Documentation
	Testing Methodology
	Testing Sufficiency
	Test Classes
	IParser Test Classes
	DashParserTest.java
	DoubleBarParserTest.java
	NoteParserTest.java
	SlideParserTest.java
	SpacingParserTest.java
	SquareNoteParserTest.java
	SubtitleParserTest.java
	TabParserTest.java
	TitleParserTest.java

	ITabNotation Test Classes
	BarLineTest.java
	BarTest.java
	DoubleBarTest.java
	HammerOnTest.java
	PullOffTest.java
	ScalingTest.java
	SpacingTest.java
	SquareNoteTest.java
	SubtitleTest.java
	TabTest.java
	TitleTest.java

	Coverage and Metrics
	ca.yorku.cse2311.tab2pdf.model
	ca.yorku.cse2311.tab2pdf.parser
	Tab2Pdf

