
Tab2Pdf Testing Documentation

EECS 2311
V. Tzerpos
Wednesday, April 7, 2015

Group 1
Atto, Brody
Cirillo, Marco
Patel, Deep
Ragavendran, Varsha
Sitiugin, Glib
Sitkovets, Anton

Testing Methodology

Since Tab2Pdf is built using the agile sof tware development method, we opt to incorporate
Test Driven Development into our sprints. When a group member commits code to the
repository (via a pull request), the corresponding test cases are also included. This can be
seen as a “bottom up” approach to testing, as the f oundations of the sof tware are tested
as they are built.

Locally, when a member is working on a new f eature, stub methods f or the f eature are
made f irst, f ollowed by test cases. These test cases are meant to f ail, since no code was
written yet. As the developer builds out the code in the f ormer stub methods, tests begin
to pass, and the sof tware is assured to work correctly.

In our tests, we supply a minimum of 5 valid inputs and 5 invalid inputs to each test case.
Examples of valid input were taken straight f rom the sample f iles on the course website.
Invalid input was created by malf orming the valid input, such as adding characters that were
not valid (%), making spelling mistakes (ATHOR= instead of AUTHOR=).

This document will detail the specif ic methods in our JUnit test f iles, their importance to
the overall operation of the code, and the metrics of our testing.

Testing Sufficiency

We believe f ully testing the models and parsers are suf f icient because they represent the
business logic of this program. These classes are responsible f or the bulk of what Tab2PDF
does, and as such, should be thoroughly tested.

The GUI could have been tested with Java’s Robot class, but we opted f or manual testing,
since the GUI is rather simplistic (and Sun thoroughly tests Swing code, so we know we have
a solid f oundation).

Util classes are also untested, as they are simple f unctions.

The PDF classes PdfHelper and PdfCreator are untested because there is dif f iculty in
comparing PDF documents. This is because two documents can be rendered dif f erently in
dif f erent PDF viewers, so it is tough to gauge which viewer is the truly correct (ie: the
oracle).

Test Classes

IParser Test Classes

There are two methods we test in all parsers (classes that implement IParser). The f irst
of which is canParse(String token) which returns true if the parser can parse the g iven
token into an ITabNotation object. The ITabNotation object represents a single piece
of the tab, such as a note, slide, dash or hammer-on. The second method we test is the
parse(String token) method, which actually parses the token and returns an
ITabNotation object, throwing a ParseException if the token cannot be parsed. If
canParse() returns true , it is expected that parse() will not throw a
ParseException .

DashParserTest.java

This class tests the programs ability to parse a dash (-) in tab notation. A dash signif ies a
space between notes. The more dashes there are in a row, the longer the space should be.
For valid lines, we ensure the line begins with at least one dash. For invalid lines, we put
characters that are not dashes at the beginning of the line, such as | , 1 , || , _ , and % .

DoubleBarParserTest.java

This class tests the programs ability to parse a repeat bar, which has a f ew f orms:

Standard Repeat Bar

This should render as a regular repeat bar

	- ... -	
	- ... -	
	* ... *	
	* ... *	
	- ... -	
	- ... -	

Repeat Bar with a Specif ied Number of Repeats

This should render as a repeat bar with “Repeat 3 Times” at the top of it

||- ... -|3
	- ... -	
	* ... *	
	* ... *	
	- ... -	
	- ... -	

A repeat bar signif ies a bar should repeat (an optional amount of times). For valid lines, we
ensure the line begins with at least one type of repeat bar. For invalid lines, we put
characters that are not valid repeat bars at the beginning of the line, such as - , 1 , **|| ,
-| , and | .

NoteParserTest.java

This class tests the programs ability to parse a note (3) in tab notation. A note signif ies a
musical note. Valid notes should be between 0 and 24 inclusive, as most guitars have a
maximum of 24 f rets. For valid lines, we ensure the line begins with at least one number.
For invalid lines, we put characters that are not numbers at the beginning of the line, such as
| , - , || , _ , and % .

SlideParserTest.java

This class tests the programs ability to parse a slide (3s5) in tab notation. A slide signif ies a
slide between musical notes. The slide must have at least one start note or end note. A
slide is considered indeterminate if it does not have both a start and end note (s4), and it is

up to the musician to determine where to begin the slide f rom. Valid slides should have valid
notes between 0 and 24 inclusive, as most guitars have a maximum of 24 f rets. For valid
lines, we ensure the line begins with at least one number or a slide (s). For invalid lines, we
put characters that are not numbers at the beginning of the line, such as | , - , || , 12 ,
and % .

SpacingParserTest.java

This class tests the programs ability to parse a spacing attribute (SPACING=1) in tab
notation. A spacing signif ies the horizontal spacing the PDF output should f ollow. A higher
spacing value creates more space between notes. For valid lines, we ensure the line begins
with at least (case-insensitive) SPACING=N , where N is any integer or decimal number. For
invalid lines, we put characters that are not numbers or misspell/shorthand SPACING , such
as SPACING= , SPACING=A , |-- , 0--| , and S=1 .

SquareNoteParserTest.java

This class tests the programs ability to parse a square note (<2>) in tab notation. A square
note signif ies a harmonic should be played. For valid lines, we ensure the line begins with at
least <N> , where N is any integer. For invalid lines, we put characters that are not numbers
in angle brackets, such as | , - , 1 , 23 , and % .

SubtitleParserTest.java

This class tests the programs ability to parse a title attribute (SUBTITLE=Moonlight
Sonata) in tab notation. A title signif ies the subtitle of the tab (typically the author). For
valid lines, we ensure the line begins with at least (case-insensitive) SUBTITLE=S , where S
is any string. For invalid lines, we put empty strings as the title or misspell/shorthand
TITLE , such as TITLE= , T=A , SUBTITLE= , Jim Matheos , and S=A .

TabParserTest.java

This class tests the programs ability to parse an entire tab f ile (Moonlight Sonata) into tab
notation. The tab f ile includes title, subtitle, and spacing attributes as well as the entire tab.

TitleParserTest.java

This class tests the programs ability to parse a title attribute (TITLE=Jim Matheos) in
tab notation. A title signif ies the title of the tab. For valid lines, we ensure the line begins
with at least (case-insensitive) TITLE=S , where S is any string. For invalid lines, we put

empty strings as the title or misspell/shorthand TITLE , such as TITLE= , T=A ,
SUBTITLE= , Remembering Rain , and S=A .

ITabNotation Test Classes

These test classes test all of our model objects (those that implement ITabNotation).
These represent each symbol that we support in tab notation.

BarLineTest.java

This class f ully tests the BarLine class (representing a line in a Bar), including mutator
methods (getters and setters) and equals.

BarTest.java

This class f ully tests the Bar class (representing a musical Bar), including mutator
methods (getters and setters) and equals.

DoubleBarTest.java

This class f ully tests the DoubleBar class (representing a repeating Bar), including
mutator methods (getters and setters) and equals.

HammerOnTest.java

This class f ully tests the HammerOn class (representing a musical hammer on such as
3h5), including mutator methods (getters and setters) and equals.

PullOffTest.java

This class f ully tests the HammerOn class (representing a musical pull of f such as 5p3),
including mutator methods (getters and setters) and equals.

ScalingTest.java

This class f ully tests the Scaling class (representing tab vertical scaling, such as
SCALING=5.0), including mutator methods (getters and setters) and equals.

SpacingTest.java

This class f ully tests the Spacing class (representing tab horizontal spacing, such as
SPACING=5.0), including mutator methods (getters and setters) and equals.

SquareNoteTest.java

This class f ully tests the SquareNote class (representing a harmonic Note), including
mutator methods (getters and setters) and equals.

SubtitleTest.java

This class f ully tests the Subtitle class (representing the tab’s subtitle such as
SUBTITLE=Ludwig van Beethoven), including mutator methods (getters and
setters) and equals.

TabTest.java

This class f ully tests the Tab class (representing the ASCII musical tab as a whole), including
mutator methods (getters and setters) and equals.

TitleTest.java

This class f ully tests the Title class (representing the tab’s title such as
TITLE=Moonlight Sonata), including mutator methods (getters and setters) and

equals.

Coverage and Metrics

Code coverage is grouped by package. Our f ocus is on 100% method coverage in model
and parser classes. We chose not to perf orm automated testing of the GUI, instead opting
f or manual testing.

ca.yorku.cse2311.tab2pdf.model

This table showcases the testing coverage f or our model classes.

Class Class % Method % Line %

Bar 100% (1/ 1) 100% (18/ 18) 92.9% (39/ 4 2)

BarLine 100% (1/ 1) 100% (7/ 7) 100% (15/ 15)

Dash 100% (1/ 1) 100% (8/ 8) 100% (13/ 13)

DoubleBar 100% (1/ 1) 100% (13/ 13) 84 .6% (4 4 / 52)

HammerOn 100% (1/ 1) 100% (13/ 13) 92.9% (26/ 28)

Note 100% (1/ 1) 100% (10/ 10) 90.5% (19/ 21)

Pipe 100% (1/ 1) 100% (7/ 7) 100% (8/ 8)

PullOf f 100% (1/ 1) 100% (13/ 13) 92.9% (26/ 28)

Scaling 100% (1/ 1) 100% (10/ 10) 100% (18/ 18)

Slide 100% (1/ 1) 100% (12/ 12) 93.9% (31/ 33)

Spacing 100% (1/ 1) 100% (10/ 10) 100% (18/ 18)

SquareNote 100% (1/ 1) 100% (9/ 9) 89.5% (17/ 19)

Subtitle 100% (1/ 1) 100% (10/ 10) 100% (17/ 17)

Tab 100% (1/ 1) 100% (17/ 17) 100% (33/ 33)

Title 100% (1/ 1) 100% (10/ 10) 100% (17/ 17)

ca.yorku.cse2311.tab2pdf.parser

This table showcases the testing coverage f or our parser classes.

Class Class % Method % Line %

AbstractParser 100% (1/ 1) 100% (2/ 2) 100% (2/ 2)

DashParser 100% (1/ 1) 100% (4 / 4) 100% (7/ 7)

DoubleBarParser 100% (1/ 1) 100% (4 / 4) 92.9% (26/ 28)

HammerOnParser 100% (1/ 1) 100% (4 / 4) 87.5% (7/ 8)

NoteParser 100% (1/ 1) 100% (4 / 4) 100% (7/ 7)

PipeParser 100% (1/ 1) 100% (4 / 4) 100% (7/ 7)

PullOf f Parser 100% (1/ 1) 100% (4 / 4) 87.5% (7/ 8)

SlideParser 100% (1/ 1) 100% (4 / 4) 100% (9/ 9)

SpacingParser 100% (1/ 1) 100% (4 / 4) 85.7% (6/ 7)

SquareNoteParser 100% (1/ 1) 100% (4 / 4) 100% (7/ 7)

SubtitleParser 100% (1/ 1) 100% (4 / 4) 85.7% (6/ 7)

TabParser 100% (1/ 1) 100% (11/ 11) 76.8% (96/ 125)

TitleParser 100% (1/ 1) 100% (4 / 4) 85.7% (6/ 7)

Class Class % Method % Line %

Tab2Pdf

This table showcases the testing coverage f or our entire program, grouped by package.

Class Class % Method % Line %

ca.yorku.cse2311.tab2pdf 0% (0/ 3) 0% (0/ 16) 0% (0/ 57)

ca.yorku.cse2311.tab2pdf .model 100% (15/
15)

100% (167/
167)

94 .2% (34 1/
362)

ca.yorku.cse2311.tab2pdf .parser 100% (13/
13)

100% (57/ 57) 84 .3% (193/
229)

ca.yorku.cse2311.tab2pdf .parser.exception 33.3% (1/
3)

33.3% (1/ 3) 33.3% (2/ 6)

ca.yorku.cse2311.tab2pdf .pdf 50% (1/ 2) 4 7.2% (17/
36)

4 5.3% (131/
289)

ca.yorku.cse2311.tab2pdf .ui 0% (0/ 2) 0% (0/ 26) 0% (0/ 86)

ca.yorku.cse2311.tab2pdf .ui.component 0% (0/ 6) 0% (0/ 55) 0% (0/ 24 4)

ca.yorku.cse2311.tab2pdf .ui.listener 0% (0/ 12) 0% (0/ 32) 0% (0/ 129)

ca.yorku.cse2311.tab2pdf .util 0% (0/ 4) 0% (0/ 14) 0% (0/ 4 5)

Class Class % Method % Line %

	Tab2Pdf Testing Documentation
	Testing Methodology
	Testing Sufficiency
	Test Classes
	IParser Test Classes
	DashParserTest.java
	DoubleBarParserTest.java
	NoteParserTest.java
	SlideParserTest.java
	SpacingParserTest.java
	SquareNoteParserTest.java
	SubtitleParserTest.java
	TabParserTest.java
	TitleParserTest.java

	ITabNotation Test Classes
	BarLineTest.java
	BarTest.java
	DoubleBarTest.java
	HammerOnTest.java
	PullOffTest.java
	ScalingTest.java
	SpacingTest.java
	SquareNoteTest.java
	SubtitleTest.java
	TabTest.java
	TitleTest.java

	Coverage and Metrics
	ca.yorku.cse2311.tab2pdf.model
	ca.yorku.cse2311.tab2pdf.parser
	Tab2Pdf

